1331

Reactions of Recoiling Silicon Atoms with Phosphine, Silane, and Disilane

By Peter P. GASPAR* and Peter MARKUSCH

(Department of Chemistry, Washington University, St. Louis, Missouri 63130)

Summary A high ratio of radioactive trisilane to disilane obtained from the reactions of silicon atoms in phosphinedisilane mixtures is evidence for insertion by $:^{31}SiH_{2}$ as the product-determining step.

The formation of disilane $H_3^{31}SiSiH_3$ and silane $^{31}SiH_4$ from the fast-neutron irradiation of phosphine-silane mixtures has been rationalized on the basis of a set of productdetermining steps involving the intermediate silylene $^{31}SH_2$, which is the product of the primary reactions of recoiling silicon atoms.¹

³¹PH₃ + n
$$\rightarrow$$
 ³¹Si + p + 3H
³¹Si $\rightarrow \cdots \rightarrow :^{31}SiH_2$
:³¹SiH₂ + SiH₄ \rightarrow H₃³¹SiSiH₃
:³¹SiH₂ + SiH₄ \rightarrow ³¹SiH₄
:³¹SiH₂ + PH₃ \rightarrow ³¹SiH₄
:³¹SiH₂ + PH₃ \rightarrow involatile material

Our recent experiments provide support for the intermediacy of $:^{31}SiH_2$ and suggest the occurrence of a novel reaction, the insertion of $:^{31}SiH_2$ into silicon-silicon bonds.

An alternative mechanism for the formation of $H_3^{31}SiSiH_3$ involving the coupling of silyl radicals, ${}^{31}SiH_3^{\bullet}$ with nonradioactive SiH_3^{\bullet} formed from silane by radiation damage, had been rendered unlikely by the failure of scavengers (NO, C_2H_4) to affect product yields.¹ However, the reaction efficiencies of the scavengers employed towards silyl radicals are unknown, and further evidence for the intermediacy of ${}^{31}SiH_2$ rather than ${}^{31}SiH_3$ is desirable. The fast-neutron irradiation of phosphine-disilane mixtures was therefore studied, since in this system the insertion of ${}^{:31}SiH_2$ into Si-H bonds can be distinguished from the coupling of ${}^{31}SiH_3$ with the debris from radiation damage.

Radiation damage in the phosphine-disilane system would be expected to produce SiH_3 as well as SiH_3SiH_2 ,² and thus coupling with ³¹SiH₃ would lead to the formation of significant amounts of $H_3^{31}SiSiH_3$ as well as $H_3^{31}SiSiH_2$ -SiH₃. In the event that :³¹SiH₂ is the predominant intermediate the major expected product is trisilane ³¹SiSi₂H₈ formed by Si-H insertion.

The results of fast-neutron irradiation of mixtures of phosphine with silane, disilane, and both silane and disilane are given in the Table. The product distributions suggest the following conclusions:

(i) The small amount of $H_3^{31}SiSiH_3$ and the large amount of ${}^{31}SiSi_2H_8$ formed from the reactions of recoiling silicon atoms in phosphine-disilane mixture are in accord with the intermediacy of : ${}^{31}SiH_2$ which inserts into the Si-H (or Si-Si, *vide infra*) bonds of disilane to form the major product.

(ii) The formation of small amounts of $H_3^{31}SiSiH_3$ and $^{31}SiH_4$ from phosphine-disilane mixture suggests a mechanism for the formation of these products, and for the formation of $^{31}SiH_4$ from phosphine-silane mixtures, consistent

Yields of ³¹Si-labelled products from reactions of ³¹Si atoms^a

\mathbf{Expt}	Substrate	³¹ SiH ₄ ^b	H ₃ ³¹ SiSiH ₃ ^b	³¹ SiSi ₂ H ₈ ^b
A A	1:1 PH ₃ :SiH ₄ 1:1 PH ₃ :SiH ₄	$\begin{array}{r} 18,300 \pm 2700 \\ 18,300 + 2700 \end{array}$	$\begin{array}{r} 61,100 \pm 9200 \\ 67,300 + 10,100 \end{array}$	$\begin{array}{r} 8900 \pm 1300 \\ 10.000 + 1500 \end{array}$
Α	1:1 PH ₃ :H ₃ SiSiH ₃	6800 ± 1000	4400 ± 700	58,300 \pm 8700
A A	$1:1:1 PH_3:SiH_4:H_3SiSiH_3$ $1:1:1 PH_3:SiH_4:H_3SiSiH_3$	$7100 \pm 1100 \\ 5700 + 900$	$\frac{11,800\pm1800}{10,600+1600}$	$\begin{array}{r} 44,400 \pm 6700 \\ 47,800 + 7200 \end{array}$
B B	5:1:4 PH ₃ :SiH ₄ :H ₃ SiSiH ₃	$7900\stackrel{-}{\pm}1200\ 6400+1000$	$\overline{7800} \pm 1200$	60,700 \pm 9100
Ъ	5:4:1 PH ₃ :SiH ₄ :H ₃ SiSiH ₃	0400 ± 1000	$26,500 \pm 4000$	$17,900 \pm 2300$

^a All samples at total pressure 2.0 ± 0.1 atm and, within an experiment, irradiated simultaneously at equal neutron flux as described in ref. 1. ^bYields given as counts above background extrapolated to a common time for each experiment to correct for decay. Absolute combined yields of products as % of total ³¹Si produced are 40-60%.

with a dominant role for $:^{31}SiH_2$ as reaction intermediate:

$$[3^{31}SiH_{2} + SiH_{4} \approx [H_{3}^{34}SiSiH_{3}]^{*}$$

$$\xrightarrow{\text{major}} H_{3}^{34}SiSiH_{3}$$

$$\xrightarrow{\text{minor}} H_{3}^{34}SiSiH_{3}$$

$$[3^{31}SiH_{2} + H_{3}SiSiH_{3} \approx [3^{31}SiSi_{2}H_{8}]^{*}$$

$$\xrightarrow{\text{major}} 3^{31}SiSi_{2}H_{8}$$

$$\xrightarrow{\text{minor}} H_{3}^{34}SiSiH_{3} + :SiH_{2}$$

$$\xrightarrow{\text{minor}} 3^{31}SiH_{4} + 2 :SiH_{2}$$

Similar thermal decompositions of disilane and trisilane to silvlene have been recently suggested to explain the products^{3,4} and reaction kinetics⁴ of disilane and trisilane pyrolysis.

(iii) The previously overlooked² formation of ³¹SiSi₂H₈ as a minor product from phosphine-silane mixtures cannot be due to a reaction of $:^{31}SiH_2$. The formation of trisilane from silane may be understood, however, if a primordial step toward the production of :31SiH₂ is the insertion of a silicon atom into an Si-H bond of silane. The resulting

bivalent species $H_{-^{31}}Si_{-}SiH_{3}$ may occasionally survive to take part in a second insertion forming trisilane, although its normal fate seems to be Si-Si bond scission.

(iv) A remarkably high ratio of ³¹SiSi₂H₈ to H₃³¹SiSiH₃ is obtained from phosphine-silane-disilane mixtures. A reactivity ratio, disilane to silane, of 4.9 ± 1.9 has been obtained from a series of experiments in which the silanedisilane ratio varied from 0.25 to 4.0. Since the ratio of Si-H bonds in the two molecules if 6:4, it is clear that either the Si-H bonds of disilane are considerably more reactive towards insertion by :31SiH₂ than are the bonds of silane, or $:^{31}\!\mathrm{SiH}_2$ is undergoing insertion into the Si-Si bond of disilane to form H₃Si³¹SiH₂SiH₃ as well as H₃³¹Si-SiH₂SiH₃ by Si-H insertion.

It has recently been suggested that the Si-H bonds of disilane may be weaker than those in silane,⁵ and this may explain the differential reactivity towards silvlene. On the other hand, Si-Si bond insertion has been noted as a possible explanation for a slightly greater than statistical ratio of n-tetrasilane to iso-tetrasilane believed to have resulted from reaction of $:SiH_2$ with trisilane.⁴

This work was supported by the United States Atomic Energy Commission.

(Received, August 13th, 1970; Com. 1368.)

¹ P. P. Gaspar, S. A. Bock, and W. C. Eckelman, J. Amer. Chem. Soc., 1968, 90, 6914.

² While the radiolysis of disilane has not been reported, it is well known that both C-C and C-H bond-rupture occur in the radiolysis of hydrocarbons. See S. C. Lind, "Radiation Chemistry of Gases," Reinhold, New York, 1961, pp. 103, 179; also A. V. Topchiev (ed.), "Radiolysis of Hydrocarbons," Elsevier, Amsterdam, 1964.
³ E. N. Tebben and M. A. Ring, *Inorg. Chem.*, 1969, 8, 1787.
⁴ M. Bowrey and J. H. Purnell, *J. Amer. Chem. Soc.*, 1970, 92, 2594.
⁵ P. H. Holmotorowth and M. A. Ring, *Large. Chem.*, 1969, 7, 1625.

- ⁵ R. P. Hollandsworth and M. A. Ring, Inorg. Chem., 1968, 7, 1635.